Contents
- Import Numpy
- Create 1 dim array
- Numpy array methods
Import Numpy
import numpy as np
After this, you can use numpy as np
np.xxxx
First time, it take times to load numpy library (only first time)
Create 1 dim array
We can create Numpy array from Python array
data = np.array([1,2,3,4,5,6,7,8,0,10]) print(data) print(data.dtype) # int64
Fill Zero
a = np.zeros(3) print(a)
Fill one
b = np.ones(3) print(b)
Convert type in array
a = np.array([1.0, 1.5, 2.0]) e = np.array(a, dtype=complex) print(e.dtype)
Numpy array methods
Dimension
# Dimension data = np.array([1,2,3,4,5,6,7,8,0,10]) print('Dim:', data.ndim)
Size
# Size data = np.array([1,2,3,4,5,6,7,8,0,10]) print('Size:', data.size)
Sort
# Sort data = np.array([10, 9, 8, 7, 6, 5, 4, 3, 1, 6]) data.sort() print(data) # [ 1 3 4 5 6 6 7 8 9 10]
Reverse
# Reverse data = np.array([10, 9, 8, 7, 6, 5, 4, 3, 1, 6]) data[::-1].sort() # Sort : [ 1 3 4 5 6 6 7 8 9 10] and Reverse print(data) # [10 9 8 7 6 6 5 4 3 1]
Max
data = np.array([10, 9, 8, 7, 6, 5, 4, 3, 1, 6]) print('Max:', data.max())
Total
# Total data = np.array([10, 9, 8, 7, 6, 5, 4, 3, 1, 6]) print('Sum:', data.sum())
Cum
# Cum data = np.array([10, 9, 8, 7, 6, 5, 4, 3, 1, 6]) print('Cum:', data.cumsum())
コメント